A VERSATILE METHOD FOR THE SYNTHESIS OF 1,3-METALLATITANACYCLOBUTANES

B.J.J. van de Heisteeg, G. Schat, O.S. Akkerman and F. Bickelhaupt Vakgroep Organische Chemie, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

Abstract: The reaction of Cp₂TiCl₂ with two moles of CH₂(MgBr)₂ gave Cp₂Ti(CH₂MgBr)₂ which with Me_MCl_ (M = Si,Ge,Sn) was converted to the corresponding 1,3-metallatitanacyclobutanes.

There is currently considerable interest in metallacyclobutanes of transition metals, and a considerable number with a variety of metals as heteroatoms has been synthesized.¹ Much less is known about four-membered rings containing two metal and two carbon atoms, in particular when at least one of the heteroatoms is a transition metal.² The successful preparation of metallacyclobutanes via the 1,3-di-Grignard route^{1b,c} and the demonstrated usefulness of the 1,1-di-Grignard reagent CH₂(MgBr)₂ (1) as an organometallic synthon³ inspired us to combine the two strategies, as illustrated in the synthesis of the 1,3-metallatitanacyclobutanes 2.

In an evacuated and sealed glass vessel at -20 $^{\circ}$ C, Cp₂TiCl₂ (3) was reacted with two moles of 1 in ether/benzene (1:1) solution. After stirring for one hour, a practically insoluble, dark red, viscous precipitate had been formed which contained ca. 40% of 4. Structural identity and yield of 4 were determined by its conversion with chlorotrimethylgermane to 6, which was identical with a compound obtained by Lappert et al. 4 along a different route. Similarly, on addition of 5 to 4 and warming to room temperature, the insoluble red precipitate slowly dissolved to yield a brownish red solution of 2; a white powder remained (presumably MgBrCl). The isolation of 2 was achieved by evaporation of the reaction mixture to dryness, extraction of the residue with benzene, followed by filtration and evaporation of the filtrate; the residue thus obtained consisted, respectively, of practically pure 2a (100% yield relative to 4 by ¹H NMR analysis), while 2b (75% yield) and especially 2c (15% yield) contained $Cp_2TiCH_2Ti(Cp_2)CH_2$ (7) 2b, 5 (for 2c ca. 7%).

Compound	$^{1}_{\rm H}$ NMR $\stackrel{a}{-}$			¹³ C NMR <u>b</u>			HRMS
	C5H5	CH2	СН3	с ₅ н ₅	CH ₂	CH3	(calc.)
2a	5.57	2.52	0.13	110.2	70.6	1.0	264.0803 <u>C</u>
				(d; 173)	(t; 130)	(q; 119)	(264.0814)
2b	5.43	2.75	0.26	108.6	71.5	-0.2	310.0250 <u>d</u>
				(d; 174)	(t; 134)	(q; 125)	(310.0260)
2c	5.39	2.93	0.19	<u>e</u>	<u>e</u>	<u>e</u>	<u>e</u>

Table 1. Spectral Data of 2a, 2b and 2c

 $\frac{a}{2}$ 90 MHz, δ [ppm]; in C₆D₆ (C₆HD₅ as internal standard at 645 Hz; integrals in agreement with the number of protons). $\stackrel{c}{=}$ 62.89 MHz (C₆D₆), δ [ppm] (multiplicity; 1 J(CH) [Hz]). $\stackrel{c}{=}$ 2a⁺·: 31% $\frac{d}{2}$ 2b⁺·: 27%; expected isotope pattern. $\stackrel{e}{=}$ Not yet determined due to instability of 2c.

The structure assignments of 2 are based on the spectral data (Table 1). The monomeric structure of 2a, obtained by different routes^{2d,e}, has been unambiguously established.^{2e} Monomeric structures are supported by the mass spectra, in which the 2^+ ions are prominent. Typical for the strained, four-membered rings are the relatively low field proton chemical shifts^{1b} of the Me₂M groups, and the low field shifts of both nuclei of the CH₂ group; the latter are, as expected, ⁴ slightly shifted upfield in comparison to the carbon analogue 2d (2, M = C).^{1a,C} The large ¹J(CH) > 130 Hz of the CH₂ groups is also indicative of a four-membered ring (compare e.g. 2b, ¹J(CH) = 134 Hz; 6: $\delta(^{13}C) = 65$ ppm, ¹J(CH) = 118 Hz). Contrary to 2d, ^{1a,C} 2a and 2b are stable in solution at room temperature; in C₆D₆, no decomposition was observed after two months. This probably indicates the inability of 2a and 2b to fragment^{1a} into Cp₂Ti=CH₂ and Me₂M=CH₂, as the tendency to form the latter is clearly lower for M \neq C. Only 2c decomposed within a few days; this is presumably due to another effect, i.e. the wellknown instability of small tin heterocycles.^{1b}

Chemical corroboration of the structures of 2 was achieved by reaction with chlorotrimethylstannane to give 8. This illustrates that Ti-C bonds react readily with Cl-Sn bonds; similar (side) reactions between 2c and 5c are probably responsible for the low yield obtained of 2c.

The new approach to 1,3-dimetallacyclobutanes is in principle also applicable to metal dihalides other than 3 and 5. The investigation of its scope, and of the reactions of 2, is in progress.

References and Notes

- a) D.A. Straus and R.H. Grubbs, <u>Organometallics</u>, 1, 1658 (1982) and references cited.
 b) J.W.F.L. Seetz, G. Schat, O.S. Akkerman and F. Bickelhaupt, <u>J. Am. Chem. Soc</u>., <u>105</u>, 3336 (1983).
 c) J.W.F.L. Seetz, G. Schat, O.S. Akkerman and F. Bickelhaupt, Angew. Chem., <u>95</u>, 242 (1983), and references cited.
- 2. a) R.A. Andersen, R.A. Jones, G. Wilkinson, M.B. Hursthouse and K.M.A. Malik, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, <u>1977</u>, 283. b) K.C. Ott and R.H. Grubbs, <u>J. Am. Chem. Soc.</u>, <u>103</u>, <u>5922</u> (1981).
 c) J.W. Bruno, T.J. Marks and V.W. Day, <u>J. Am. Chem. Soc.</u>, <u>104</u>, 7357 (1982). d) H. Sakurai and H. Umino, <u>J. Organomet. Chem.</u>, <u>142</u>, C49 (1977). e) W.R. Tikkanen, J.Z. Liu, J.W. Egan, Jr., and J.L. Petersen, <u>Organometallics</u>, <u>4</u>, 825 (1984).
- 3. J.W. Bruin, G. Schat, O.S. Akkerman and F. Bickelhaupt, Tetrahedron Letters, 24, 3935 (1983).
- 4. M.R. Collier, M.F. Lappert and R. Pearce, J. Chem. Soc., Dalton Trans., 1973, 445; J. Jeffery, M.F. Lappert, N.T. Luong-Thi, M. Webb, J.L. Atwood and W.E. Hunter, J. Chem. Soc., Dalton Trans., 1981, 1593.
- Trans., 1981, 1593. 5. Compound 7 was not formed by decomposition of the intermediate Cp₂Ti(Cl)CH₂MgBr³; its mode of formation will be the subject of a forthcoming publication.

(Received in UK 24 August 1984)